
Integration of Static and Dynamic Code Stylometry Analysis
for Programmer De-anonymization

Ningfei Wang
Lehigh University
niw217@lehigh.edu

Shouling Ji
1Zhejiang University

2Alibaba-ZJU Joint Research Institute
of Frontier Technologies

sji@zju.edu.cn

Ting Wang
Lehigh University

inbox.ting@gmail.com

ABSTRACT
De-anonymizing the authors of anonymous code (i.e., code stylom-
etry) entails significant privacy and security implications. Most
existing code stylometry methods solely rely on static (e.g., lexical,
layout, and syntactic) features extracted from source code, while
neglecting its key difference from regular text – it is executable!
In this paper, we present Sundae, a novel code de-anonymization
framework that integrates both static and dynamic stylometry anal-
ysis. Compared with the existing solutions, Sundae departs in
significant ways: (i) it requires much less number of static, hand-
crafted features; (ii) it requires much less labeled data for training;
and (iii) it can be readily extended to new programmers once their
stylometry information becomes available.

Through extensive evaluation on benchmark datasets, we demon-
strate that Sundae delivers strong empirical performance. For ex-
ample, under the setting of 229 programmers and 9 problems, it
outperforms the state-of-art method by a margin of 45.65% on
Python code de-anonymization. The empirical results highlight the
integration of static and dynamic analysis as a promising direction
for code stylometry research.

CCS CONCEPTS
• Security and privacy → Pseudonymity, anonymity and untrace-
ability;

KEYWORDS
Code Stylometry; Dynamic Analysis; De-anonymization
ACM Reference Format:
Ningfei Wang, Shouling Ji, and Ting Wang. 2018. Integration of Static and
Dynamic Code Stylometry Analysis, for Programmer De-anonymization.
In 11th ACM Workshop on Artificial Intelligence and Security (AISec ’18),
October 19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3270101.3270110

1 INTRODUCTION
It is known that, just like one’s handwriting, every programmer has
a distinct coding style, which is formed by a variety of preference
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AISec ’18, October 19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6004-3/18/10. . . $15.00
https://doi.org/10.1145/3270101.3270110

choices: for example, some like to use tab over space for inden-
tation, some prefer for loop over while loop, and some choose
modular design over monolithic design.

This “code stylometry” allows one to fingerprint a programmer
and to de-anonymize code that has been carefully sanitized. The
practicality of code de-anonymization entails significant privacy
and security implications especially in forensic contexts, including
plagiarism detection, copyright dispute investigation, and malware
authorship identification. For example, if an anonymous third-party
software library matches a hacker’s code stylometry, it is then
sensible to assume that the library may not be safe to use.

The importance of code stylometry has attracted intensive re-
search effort from the security communities. A plethora of code
de-anonymization methods have been proposed [9, 17, 20, 26, 30,
35, 37, 41]. However, most existing methods use a large number
of hand-crafted, static features (e.g., layout, lexical, and syntactic).
For example, in [17], Caliskan-Islam et al. proposed to perform de-
anonymization by performing dimensionality reduction on 120,000
static features and feeding the resulting features to a random forest
classifier. Despite their impressive empirical performance, as they
solely rely on static features, these methods are fairly sensitive
to syntax changes and cannot be applied to compiled binary or
assembly code.

Indeed, one prominent trait that distinguishes text and code is
that code can be compiled and executed, which generates a large
number of dynamic features, including memory dynamics, CPU dy-
namics, disk dynamics, and network dynamics. For example, some
programmers may prefer to use array over heap, which can be
captured by their memory access patterns. While such dynamic fea-
tures are ignored in most existing work, we argue that they provide
a distinct perspective on code stylometry. First, they well compli-
ment static feature (details in Section 3). Second, they are insensitive
to syntactic changes. Third, they are preserved in compiled binary
and assembly code.

Our Work
Motivated by the drawbacks of existing work and the importance
of dynamic features, in this paper, we present Sundae1, the first-
of-its-kind code de-anonymization framework that integrates both
static and dynamic features in stylometry analysis.

The overall framework of Sundae is illustrated in Figure 1. Lying
at the core of Sundae are three key components: (i) static feature
extractor, which analyzes the given code in a static manner and
extracts static features from it, (ii) dynamic feature extractor, which

1SUNDAE: Static UNderlined Dynamic Analysis Engine.

https://doi.org/10.1145/3270101.3270110
https://doi.org/10.1145/3270101.3270110

Feature Database
(known programmers)

Static Feature
Extractor

?

Dynamic Feature

Extractor

Matching Result

Anonymous Code
(unknown programmer)

Stylometry MatcherD

Stylometry Features

Figure 1: Overall framework of Sundae, which consists of three core components: static feature extractor, dynamic feature
extractor, and stylometry matcher.

supplies necessary input, runs the code in an instrumented environ-
ment, and collects its dynamic features, and (iii) stylometry matcher,
which compares the features of anonymous code with that of the
known programmers in databases, and identifies the most probable
matches.

To realize this framework, a number of challenges need to be
carefully addressed, including: (i) the definition of dynamic fea-
tures, (ii) the collection of dynamic features, and (iii) the extension
to new programmers. To the first challenge, we define an array
of dynamic feature based on three key aspects of the code exe-
cution: running time, memory access, and function call. To the
second challenge, we employ a set of high-performance profilers
to instrument source code and to monitor execution history. To
the third challenge, we build a deep neural network (DNN)-based
stylometry matcher, which follows the Siamese architecture and is
able to readily incorporate new programmers once their stylometry
information becomes available.

We implement Sundae for Python, which is one of the most
popular programming languages and supported across different
operating systems. However, it is worth emphasizing that while
Sundae is implemented for Python, the underlying techniques can
be readily generalized to other programming languages as well.

To empirically evaluate Sundae, we crawled the datasets of
Python source code in Google Code Jam Competition from 2008
to 2017[1]. Across all the settings, Sundae outperforms the state-
of-the-art code de-anonymization methods by large margins. For
example, under the setting of 229 programmers and 9 problems,
it outperforms the state-of-art method by a margin of 45.65% on
Python code de-anonymization. The empirical results highlight the
integration of static and dynamic analysis as a promising direction
for code stylometry research.

Our Contributions
To the best of our knowledge, this work represents the first code
de-anonymization framework that integrates both static and dy-
namic stylometry analysis. Our contributions can be summarized
as follows:

• First, we articulate the drawbacks of existing work on code
de-anonymization and highlight the importance of leverag-
ing dynamic stylometry features in code de-anonymization.

• Second, we present Sundae, a novel framework which lever-
ages both static and dynamic stylometry analysis and per-
forms de-anonymization that is both accurate (i.e., it cor-
rectly identify the true authors of the anonymous code) and
robust (i.e., it is insensitive to the number of candidate au-
thors or the amount of labeled training data).

• Finally, through extensive evaluations on benchmark datasets,
we show that Sundae outperforms the state-of-the-art meth-
ods in terms of both accuracy and robustness.

Our work is open-source and most of the source codes in this
paper are available at https://github.com/ningfeiwang/Code_De-
anonymization.

Roadmap
The remainder of the paper will proceed as follows. Section 2 in-
troduces fundamental concepts and motivates the overall design of
Sundae. Section 3 details the core components of Sundae, including
static feature extractor, dynamic feature extractor, and stylometry
matcher. Section 4 empirically evaluates the efficacy of Sundae
in terms of de-anonymization accuracy and robustness. Section 5
discusses its limitations and points to several promising directions
for further investigation. Section 6 surveys literature relevant to
this work. The paper is concluded in Section 7.

2 OVERVIEW OF SUNDAE
In this section, we motivate the design of Sundae. At a high level,
Sundae realizes two key ideas: (i) It integrates static and dynamic
stylometry analysis, which significantly improves the accuracy and
robustness of code de-anonymization. (ii) It adopts an extensible
matching framework that readily incorporates the code stylometry
of new programmers.

https://github.com/ningfeiwang/Code_De-anonymization
https://github.com/ningfeiwang/Code_De-anonymization

2.1 Integration of Static and Dynamic Analysis
Similar to written texts, it is found that computer programs also
demonstrate a variety of style features unique to programmers [17],
which enables static stylometry analysis of source code. The fea-
tures used in literature can be roughly classified into three cate-
gories: lexical (e.g., use frequency of keywords such as while, if
and for, the function number per file, and print styles), layout
(e.g., the use of tab or four space for indentation), and syntactic
(e.g., the characteristics of the abstract syntax tree of source code).
Yet, relying solely on static analysis, existing methods often require
a large number of hand-crafted, static features (e.g., 120,000 features
in [17]).

Following this line of work, Sundae also extracts a collection
of static features. However, thanks to its integration of dynamic
analysis, Sundae only uses a small number (only 74 in our im-
plementation) of general-purpose, static features found across a
variety of programming languages.

While static stylometry analysis itself has achieved strong em-
pirical performance [9, 17, 30, 35, 41], it suffers a set of fundamental
limitations, including: (i) its sensitivity to syntactic change, (ii) its in-
applicability to compiled or assembly code, and (iii) its requirement
of a large number of hand-crafted features [33].

We argue that the drawbacks of static stylometry analysis can
be greatly mitigated if it is integrated with dynamic stylometry
analysis. Instead of focusing on its lexical, layout, or syntactic char-
acteristics, dynamic stylometry analysis executes the source code,
collects its runtime measurements (e.g., memory use, CPU use,
data structure use), and identifies its dynamic, programmer-specific
properties [11]. Note that dynamic stylometry analysis is invariant
to syntactic change and applicable to compiled or assembly code,
therefore complementary to static stylometry analysis.

However, to perform dynamic stylometry analysis, one needs to
(i) instrument the source code with measurement mechanisms (e.g.,
breakpoints) and (ii) to supply valid input to effectively execute the
code. We detail the implementation of measurement mechanisms
and input generation in Section 3.

2.2 Extensible Code Stylometry Matching
We integrate the features generated by static and dynamic sty-
lometry analysis using a deep neural network (DNN), motivated
by their strong empirical performance in tasks that involve high-
dimensional data. One straightforward way of using DNN in our
setting is to construct a DNN-based classifier in which the number
of classes is fixed as the number of known programmers in the
dataset. This architecture, however, can not be easily extended:
once the code stylometry of new programmers becomes available,
it requires to re-train the whole system to incorporate the new data.

In Sundae, we adopt an extensible matching framework based
on the Siamese architecture [16], which consists of two duplicate
DNN networks, each extracting features from one input, and then
computes their similarity (or distance). Because the Siamese net-
work is decoupled from the features of specific programmers, once
it is optimized on a small amount of training data, it can be readily
applied to a much larger number of new programmers, without
re-training the network. Further, adding new programmers to the
database does not trigger the change of network architecture and

can be implemented using computationally inexpensive, incremen-
tal training (details in Section 3).

3 DESIGN AND IMPLEMENTATION
In this section, we elaborate on the design and implementation
of the three key components of Sundae, namely, static feature
extractor, dynamic feature extractor, and stylometry matcher.

3.1 Static Feature Extractor
Follow the line of work on static stylometry analysis, we first de-
fine a set of static features, which can be extracted from source
code without executing it. Specifically, we focus on three types of
static features: lexical, layout, and syntactic. Yet, different from ex-
isting methods that use a large number of hand-crafted features, we
only use a small number of general features that are found across
different programming languages.

Table 1. List of Static Features (Lexical)

Feature Description

Keywords 33 keywords (e.g., while, if and for)
Print use of ()
Comprehension ratio of for within []
Function number log(# files/# functions)
Function length average # LOC per function
Arguments average # arguments per function
Import ratio of import, from import, import as
Version use of Python 2 or 3 info. in comment
__name__ use of __name__ == ‘__main__’
Encoding use of UTF-8

Lexical Features. Table 1 summarizes the set of lexical features
used in Sundae. We detail a few important ones.

• Keywords – The frequencies of 33 keywords in code, includ-
ing for, while, and lambda, demonstrate the programmer’s
preference for specific keywords. As an example, some prefer
for over while.

• Print – As Python 3 requires parentheses in calling the print
function (not mandatory in Python 2), this feature thus dis-
tinguishes the version of Python the programmer is more
likely to use.

• Comprehension – Python provides comprehension as a con-
cise way to construct lists and dictionaries. Its comparison
with regular ways is shown in Figure 2. This feature mea-
sures the programmer’s use of comprehension by checking
the ratio of for that appears in [].

• Function number – This feature measures the programmer’s
tendency of reusing code. Some prefer to implement and
reuse similar operations in the form of functions, while oth-
ers may reuse similar copy by copy-and-paste.

• Function length – The LOC per function is also a discrimina-
tive feature. To fulfill the same task, rather than a monolithic
function, experienced programmers tend to use a number of
modular functions, which are easier to debug.

• Arguments – The number of arguments per function indi-
cates the “locality” of arguments: whether the programmer

Figure 2: Two different ways of constructing lists in Python.

tends to define global variables, pass variables between func-
tions, or confine computation within functions.

• Import – There are three ways of importing packages in
Python: import, from - import, and import - as. This
feature indicates the programmer’s preference for each style.

• Version – The same things for ‘Python 2 or 3’ that check
whether have some information of Python version in com-
ments.

• __name__ – Whether the code includes if __name__ ==
‘__main__’ indicates the programmer’s tendency to make
code importable and executable.

• Encoding – Whether the encoding (i.e., UTF-8) is included in
comments is another feature that distinguishes mature and
greenhorn programmers.

Table 2. List of Static Features (Layout)

Feature Description

Indentation Use of space or tab for indentation
Connection use of space in string connection
Space log(# words/# space)
Blank log(# LOC/# blank lines)
Comment number log(# LOC/# comments)
Comment length average # words per comment
Line length average # words per line

Layout Features. Table 2 summarizes the static, layout features
used in Sundae. We detail each feature below.

• Indentation – We check whether the programmers use four
spaces or one tab as indentation.

• Connection – We check whether the programmer uses a
space on string connection (e.g., a=1 versus a = 1).

• Space – This feature shows the percentage of space in code.
• Blank – The use of blank lines may also distinguish program-
mers: some use plenty of blank lines (e.g., each line of code
followed by an empty line), while others are more stingy
about the use of blank lines.

• Comment number – The comment code ratio indicates the
programmer’s preference of using comments in code. For
example, some prefer to comment a large chunk of code,
while others prefer to add short comments for each function.

• Comment length – This feature measure the average length
of each comment.

• Line length – We also measure the average length of each
line of code.

Table 3. Static Features (Syntactic)

Feature Description

Height AST tree height
Node # nodes
Leave # leaves
Var after ‘for’ average length of variable after for
‘_’ after ’for’ average number of ‘_’ after for
Initial frequency of upper-case initials in variables
Upper frequency of upper-case letters in variables
Lower frequency of lower-case letters in variables
‘_’ frequency of ‘_’ in all variables

Syntactic Features. Following previous work, we also define the
set of syntactic features based on the AST tree (abstract syntax tree)
of the source code.

At a high level, AST is a tree-formed representation of the ab-
stract syntactic structure of source code, wherein each node denotes
a construct occurring in the source code, and each edge repre-
sents the relation between the corresponding two constructs. As
an example, Figure 3 shows a piece of sample source code, and its
corresponding AST tree. In our implementation, we use the AST
module [3] to construct the AST tree and extract features from it.

We then extract a set of syntactic features from the AST tree,
which are summarized in Table 3.

• Height – This feature reflects the deepest level the program-
mer places a node within the solution.

• Node –We measure the number of constructs (e.g., functions,
variables, operators) in the code.

• Leave – We measure the number of leave nodes in the tree.
• Var, ‘_’ after ‘for’ – These features measure the average length
of variables and the average number of ‘_’ in variables after
for.

• Initial, upper, lower, and ‘_’ – These features capture the
patterns in the variable names, such as the frequencies of
upper-case, lower-case, and ‘_’ in variables.

All the features in Table 1, 2, and 3 are extracted from the source
code and encoded into a feature vector, which forms the static
features of the code of interest.

3.2 Dynamic Feature Extractor
One significant distinction of Sundae from the state-of-the-art code
de-anonymization methods is its incorporation of dynamic stylom-
etry analysis. In Sundae, we collect the characteristics observed
during executing the source code and construct a set of dynamic
features to distinguish programmers.

Specifically, we focus on three main categories of dynamic fea-
tures, running time, memory, and disassembled code. For the run-
ning time, we use the Python profiler cProfile [7] to measure the
running time of individual modules. For memory usage, we use the
Python profiler memory_profiler [6] to measure the memory usage
of individual functions. For disassembled code, we use the Python
module dis to disassemble the Python bytecode back to the Python
source codes [5].

The list of features is summarized in Table 4. The details are
given below.

Figure 3: Sample python source code and its AST tree.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Memory Address

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

O
p
e
ra

ti
o
n
s
 T

im
e
s

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Memory Address

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

O
p
e
ra

ti
o
n
s
 T

im
e
s

Figure 4: Memory access patterns of the code of two distinct programmers for the same Google CodeJam problem (“Oversized
Pancake Flipper” - problem id: “5736519012712448”, competition id: “3264486”).

Table 4. Dynamic Features

Feature Description

Function call # function calls
Module time average running time per module
Total time total running time of
Function memory memory usage of each function
Total memory total memory usage
Memory access memory access patterns
Disassembled code length of disassembled code

• Function call – This feature measures the usage frequencies
of customized and built-in functions (e.g., range, append,
iter). This feature can determine whether the program-
mers prefer using functions (including functions defined by
programmers and Python internal functions) to achieve spe-
cific objectives. For example, to append values into a list in
Python, the programmer may use append function or use
list addition operations.

• Module time – This features measures the running time of
individual modules, which suggests whether the program-
mer prefers to use a number of modules, each with short
running time, or integrate different modules inside a large
one with long running time.

• Total time – This feature measures the total running of the
code, which reflects the inherent complexity of the code for
the given problem.

• Function memory – We collect the average memory usage
of each function when it is invoked, which reflects the pro-
grammer’s fine-grained memory usage patterns.

• Total memory –We also measure the total memory usage per
file. This feature address the memory usage habits roughly
(e.g., free the memory after managing).

• Memory access – This feature details the memory access
patterns of the given code, in the form of histogram (fre-
quency versus address). To show the effectiveness of this
feature, we randomly pick a problem in the Google CodeJam
competition as an example (“Oversized Pancake Flipper” [2]).
Figure 4 contrasts the memory access patterns of the code by
two programmers. It is clear that the first programmer uses

a large spectrum of memory addresses, while the second one
intensively utilizes a small range of memory addresses. We
thus use memory access patterns as a discriminative feature
to distinguish programmers. To be computationally efficient,
we create the feature values by extracting the histogram
values for specific frequencies (e.g., 10 times).

• Disassembled code – The original Python code may be redun-
dant and deviate far from its assembled version. To count
this difference, we disassemble the bytecode of the original
code back to source code and measures its length.

All the features in Table 4 are extracted from the source code
and encoded into a feature vector, which in conjunction of the set
of static features, form the complete feature set.

Another challenge for extracting the dynamic features is to sup-
ply valid input to effectively execute the source code. The discussion
on generating valid inputs is deferred to Section 4.

3.3 Stylometry Matcher
In Sundae, we build the stylometry matcher based on a deep neural
network (DNN) architecture. However, traditional DNNs used in
classification tasks assume a fixed number of classes (i.e., a fixed
number of programmers in our setting), which significantly hinders
its extension to new programmers in our setting.

Instead, we build the stylometry matcher using a Siamese ar-
chitecture, which takes as input two (raw) feature vectors (e.g.,
the features of anonymous code, and the features of a known pro-
grammer) and outputs the similarity score of these two feature
vectors, indicating whether the anonymous code is likely authored
by this known programmer. It is noticed that as this architecture
is not coupled with the number of classes in the dataset, it can be
readily extended to new programmers as their stylometry becomes
available.

As shown in Figure 5, in a nutshell, the Siamese network consists
of three major parts, two base networks, and one matcher. The two
identical base networks are responsible for abstracting high-level
feature vectors from the input feature vectors, and the matcher is
responsible for computing the similarity score of the two high-level
feature vectors.

In current implementation, we adapt the basic Siamese archi-
tecture to the task of code de-anonymization. The base network is
a pre-trained DNN model with four fully-connected layers, with
detailed architecture given in Table 5. The matcher is formed by
a subtract layer, a fully connected layer, and a softmax layer. The
outputs of the two base networks are fed to the matcher, which
outputs the similarity score of the two inputs (i.e., how likely the
anonymous code is authored by the known programmer).
Table 5. Architecture of the base networks used in Sundae.

Property Parameters

Hidden Layers Number 4
Dropout Rate 0.2
Hidden Layers Neural Numbers 400, 300, 200, 200
Active function “Relu”
Batch Size 50
Epoch 20

Figure 5: Illustration of a Siamese Network, which consists
of three core parts, two identical base networks and one
matcher.

4 EMPIRICAL EVALUATION
In this section, we empirically evaluate the proposed Sundae frame-
work. The experiments are designed to answer two key questions:
(i) How effective is Sundae in terms of de-anonymizing code, com-
pared with alternative methods? (ii) What is the distinguishing
power of different features selected by Sundae?

We begin with describing the experimental setting.

4.1 Experimental Setting
Datasets. Following previous work [9, 17], we use the source code
in the Google CodeJam competition archive [1] as the benchmark
dataset in our evaluation. This competition calls on programmers
around the world to solve a set of algorithmic problems, with partic-
ipants of different educational levels (e.g., middle-school students,
high-school teachers, college professors). Thus, the dataset covers
a large demographical diversity.

We build a customized crawler to simulate a Chrome Browser.
We let the crawler visit the Google CodeJamwebsite and downloads
the dataset of archived competitions (2008 to 2017), which includes
the following key parts: the competition questions, the sample
inputs to the questions, the source code (e.g., solutions) submitted
by participants, and the ids of the participants.

We then divide the resulting dataset into different subsets based
on the LOC of source code of each programmer. Specifically, the
dataset is partitioned into four subsets, as summarized in Table 6.
For example, the first dataset (D80) includes the programmers (to-
tally 75 programmers) who have contributed more than 80K LOC to
the competition, which involve 221 problems. It is noted that from

Table 6. Statistics of the Google CodeJam dataset.

Dataset LOC/Programmer #Programmers #Problems

D80 >80k 75 221
D60 >60k 139 223
D40 >40k 330 224
D20 >20k 1,159 229

dataset1 to dataset4, due to the growing number of programmers
and the decreasing amount of code per programmer, it becomes
increasingly challenging to de-anonymizing the code.

For the D80, D60, and D40 datasets, we partition each dataset
as 80% for training (20% of the training data for validation) and
20% for testing. The D20 dataset is the most challenging setting,
in which we train the code de-anonymization models on the D60
dataset and apply the trained model to the entire D20 dataset for
testing.
Table 7. Running environment to collect dynamic features.

Property Configuration

CPU Intel-Core i7-6700K @4.00GHz x 8
memory 16GB
OS Ubuntu 18.04 LTS
Anaconda 5.1.0

Running Environment. As Sundae requires to analyze the dy-
namic features of the given code during its execution, the results
thus highly depend on the hardware platform, especially for run-
ning time and memory usage-related measurements. We thus dedi-
cate a standalone workstation to the collection of dynamic features.
Also, as the execution of Python code often requires a number of
external libraries, we use Anaconda [4] to supply these libraries.
Anaconda include 250+ popular data science packages for Python,
which is sufficient for our evaluation.

The details of the hardware and software environments are sum-
marized in Table 7.

4.2 Comparative Evaluation
End-to-End Performance. In the first set of experiments, we
compare Sundaewith a set of state-of-the-art code de-anonymization
methods in terms of their end-to-end performance of code de-
anonymization.

Specifically, Aylin et al. [17] and Bander et al. [9] also perform
code de-anonymization on the Python code in the Google CodeJam
dataset. We thus directly quote their reported results. In addition,
we re-implement [21], which employs C4.5 decision tree as the
classifier and includes all the features used in [21] and available
in Python. Finally, we re-implement [25], another state-of-the-art
code de-anonymization method, which uses a nearest neighbor
classifier and includes all the features used in [21] and available
in Python. We replicate the setting reported in the original papers
using our dataset.

The results are listed in Table 8 and Figure 6. We have the fol-
lowing key observations. First, across all the settings, Sundae out-
performs existing methods in terms of de-anonymization accuracy,
even though it uses much less number of static features compared

(23, 9)
(25, -) (70, -) (74, 211)

(229, 9)

Data Scale (Programmers, Problems)

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

Previous Work SUNDAE

Figure 6: Comparison of Sundae and alternativemethods un-
der different scales.

0 5 10 15 20

Epoch

50

60

70

80

90

100

V
a
li
d
a
ti

o
n
 A

c
c
u
ra

c
y
 (

%
)

Static Only

Static and Dynamic

Figure 7: Comparison of the performance of Sundae and its
variant based on static features.

with alternative methods. For example, in the case of 229 program-
mers and 9 problems, Sundae leads [17] by a margin of 45.65%!
Second, across all the settings, Sundae attains fairly stable accuracy,
varying from 95.45% to 99.56%. Both phenomena can be attributed
to the unique framework of Sundae, which integrates both static
and dynamic stylometry analysis, and overcomes the instability
limitations of static features.

In addition, we further evaluate Sundae on all the datasets in
Table 6, with results shown in Table 9. It is interesting to notice
that Sundae is insensitive to the amount of code available for each
programmer and the number of programmers. Indeed, the accuracy
slightly increases from 98.84% to 99.91% from D80 to D20. This can
be attributed to the extensibility nature of the stylometry matcher,
which can be readily extended to new programmers, without af-
fecting its performance on existing ones.

Table 8. Comparison of Sundae and alternative code de-anonymization methods.

Method #Programmers #Problems Accuracy Accuracy (Sundae)
Elenbogen et al. [21] 74 221 20.81% 98.84%
Frantzeskou et al. [25] 74 221 43.24% 98.84%

Caliskan-Islam et al. [17] 23 9 87.93% 95.45%
Caliskan-Islam et al. [17] 229 9 53.91% 99.56%

Alsulami et al. [9] 25 - 96.00% 96.52%
Alsulami et al. [9] 70 - 88.86% 98.77%

Table 9. Performance of Sundae on the Google CodeJam datasets.

Method Dataset #Programmers #Problems #Accuracy

Sundae

D80 74 221 98.84%
D60 139 223 99.24%
D40 331 224 99.68%
D20 1,159 229 99.91%

Static versus Dynamic Analysis. To further understand the im-
pact of dynamic stylometry analysis, in the second set of exper-
iments, we create a variant of Sundae, that uses only the static
features.

Figure 7 shows the de-anonymization accuracy of Sundae and its
variant as a function of the number of training epochs. It is observed
that the use of dynamic stylometry analysis not only significantly
boosts the overall accuracy but also improves the training efficiency.
For example, at the end of the 10-th epoch, Sundae already attains
84% accuracy, while its variant based on static features only reaches
72% accuracy. We can thus conclude that incorporating dynamic
features seems a promising direction for further improving code
stylometry analysis.

4.3 Feature Evaluation
In this set of experiments, we perform an ablation study on the
importance of the features selected by Sundae.

Most existing work uses information theoretical metrics (e.g.,
mutual information) to measure feature importance (e.g., by com-
puting the mutual information of features and the ground-truth
classes). Yet, in the setting of Sundae, as we adopt a deep neural
network (DNN)-based architecture, we use a DNN-based metric to
meaure feature importance.

Specifically, we examine the base network in Sundae (recall that
both base networks are identical) and measure the importance of
a feature by the (absolute) average weights on the 400 outgoing
connections of the corresponding input neuron in the DNN. The
distribution of the importance scores of features selected by Sundae
are shown in Figure 8. It is observed that the distribution follows
a long-tail distribution, indicating that there are a few important
features and a large number of less important ones.

Table 10 and Table 11 list respectively the 10 most important
features and the 5 least important ones. Observe that the top 10
list includes both static and dynamic features (while the bottom
5 list consists of only static features), indicating that the dynamic
features well complement the static ones in Sundae.

4
5

6
8

6
7

4
3

6
6

4
9

7
1

3
4

6
4

6
9

3
6

8
1

4
7

5
3

4
8

3
8

7
3

2
3

4
6

8
0

5
6

5
8

2
9

8
5

7
4

1
8

6
5

2
0

3
1

3
7

7
2

8
4

4
4

2
7

3
2

5
0

1
5 5

5
2

1
6

4
2

1
3

5
9

1
9

6
1

8
3

8
2

6
2

8
9

7
9 7

5
4

3
5 0

7
7

8
8

2
5

7
0 2

5
7 4

7
6

5
5

7
5

8
7

4
0 8

8
6

1
1 6

3
0

6
3 3

7
8

1
4

2
6

1
7

6
0 9

4
1 1

2
4

3
9

5
1

3
3

1
2

1
0

2
2

2
1

2
8

Feature Sequence

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
b
s
o
lu

te
 V

a
lu

e
 o

f
W

e
ig

h
t

Figure 8: Distribution of the importance scores of features
selected by Sundae.
Table 10. The 10most important features selected by Sundae.

Rank Feature Weights (ABS)

1 ‘_’ 0.6397
2 Print 0.5790
3 Indentation 0.5559
4 Upper 0.4258
5 Function number 0.4044
6 Node 0.3943
7 Memory access 0.3919
8 Function length 0.3813
9 Arguments 0.3598
10 Function Memory 0.3359

4.4 Extensibility Evaluation
In the final set of experiments, we evaluate the extensibility of
Sundae, i.e., how Sundae can incorporate new programmers once
their stylometry information becomes available. Specifically, we
compare the training time of Sundae and alternative architectures
when adding a new programmer into the database. To make a
fair comparison, we construct the alternative architecture as the

Table 11. The 5 least important features selected by Sundae.

Rank Feature Weights (ABS)

1 Keywords (“return”) 0.0039
2 Keywords (“in”) 0.0040
3 Keywords (“is”) 0.0049
4 Keywords (“def”) 0.0085
5 Keywords (“if”) 0.0094

integration of the “Base_network” and a “softmax” layer. The update
time is defined as the total running time until convergence after
adding a new programmer into the database.

Figure 9 shows the detailed comparison. Observe that the update
time of Sundae is fairly insensitive to the number of programmers
in the database. In comparison, the update time of the alternative
architecture increases approximately linearly with the number of
programmers. This difference may be explained as follows. Sundae
essentially learns the metric to measure the distance between dif-
ferent programmers, while the addition of new programmers may
have fairly limited impact to this metric. In contrast, the alternative
architecture is essentially a multi-class classifier, in which the num-
ber of classes equals to the number of programmers in the database;
thus, adding a new programmer needs to adjust the distribution
among all the programmers in the database.

Thereby, we can conclude that Sundae can be readily extended
to new programmers.

500 1000 1500 2000 2500 3000 3500

Item Number in Database

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 C

o
n
s
u
m

p
ti

o
n
 (

s
)

Base Network

SUNDAE

Figure 9: Extensibility comparison between Sundae and al-
ternative architecture.

5 DISCUSSION
In this section, we discuss the limitations of this work, possible
countermeasures, and several directions for further research.

5.1 Limitations
First, while the Google CodeJam dataset used in our evaluation show
realistic features (e.g., strong sparsity – only 75 programmers have
contributed 80K+ LOC), it is still significantly different from real
coding environments. For instance, the CodeJam dataset focuses on
229 well-defined problems with sample inputs and standard outputs,
while in real settings, often the tasks are much more complicated
(i.e., consisting of multiple problems).

Second, the de-anonymization accuracy varies significantly with
the nature of the problems. The Google CodeJam competition pro-
vides multiple difficulty levels, which manifests in different rounds.
We observe that the difficulty level often impacts the distinctive
patterns of different programmers. For example, if the problem is
to implement Quicksort with an array, the programmers tend to
consider two ways, recursion and non-recursion, and some pro-
grammers may use the same template codes; if the problem is to
implement Quicksort with a linked list, the programmers show
a large variation in their coding styles, from double linked list, to
single linked list, and that will provide more distinct features to
fingerprint the programmer.

Third, we do not consider the cases that the source code is de-
signed by multiple programmers. Large projects on platforms such
as Github and Gitee often involve plenty of contributors. In or-
der to handle such cases, code fragment analysis is indispensable
to localize the fragments contributed by different programmers.
Nevertheless, to execute code fragments and to extract dynamic
features, more instrumentation and input generation are needed.
For example, if we split the source code into individual functions,
we need to detect the input data types (e.g., list and dictionary)
and feed precise inputs to ensure execution.

Fourth, we do not consider the cases of malicious source code.
Such code, if executed, may harm the operating systems or even
hardware. For such cases, we often need sandbox environments
(e.g., virtual machines) to run the source code to extract dynamics
features.

5.2 Countermeasures
Next, we discuss possible countermeasures that may defend against
our de-anonymization attacks.

First, there are integrated development environments (IDEs) that
include normalization tools (e.g., vim includes adjusting indentation
methods), whichmay help unify coding styles.With the help of such
tools, many static features in Section 3 may be less discriminative,
which may influence the de-anonymization accuracy.

Second, it is possible to inject noise into source code to mislead
the de-anonymization method. For example, one can pad a random
number of enter to comments, which may influence the feature of
average comment length.

5.3 Future Directions
This work also opens several research directions that are worth
further investigation.

First, we consider extending our approaches – integrating static
and dynamic features – to other programming languages (e.g., C,
C++ and Java) as our ongoing research. Note that some static fea-
tures (lexical) which are specific to Python need to be re-defined
for other programming languages is required, while most dynamic
features are universal across different programming languages.

Second, the feature extraction in Sundae is mostly hand-crafted.
We consider applying machine learning (especially deep learn-
ing) techniques to automate this process. For example, in previous
work, Alsulami et al. [9] manage to apply Long Short-Term Mem-
ory(LSTM) to train the AST trees, which represents a novel use of
DNN in stylometric feature engineering.

Third, we believe that Sundaemay help bug tracing and remedy
recommendation. After obtaining the authorship of the code, one
may build a database to create profiles for programmers about their
tendency to inject bugs. Then, once a potential bug is reported, one
may easily find the likely responsible programmers.

Fourth, large projects, especially open source projects, may in-
volve more than one contributor. It is an interesting direction to
extend Sundae to handle the cases of multiple authors by integrat-
ing it with techniques such as code fragmentation.

6 RELATEDWORK
In this section, we review the relevant literature in four categories:
stylometry, source code de-anonymization, static and dynamic anal-
ysis, and classification model.

6.1 Stylometry
Traditionally stylometry ismainly applied in linguistic fields. Bergsma
et al. [13] present an approach to automatically recover hidden
attributes of scientific articles (e.g., whether the author is male
or female). Feng et al. [22] investigate syntactic stylometry for
deception detection. Brocardo et al. [15] perform analysis for au-
thorship verification in short texts using stylometry. To defend
against such de-anonymization attacks, there is also work on possi-
ble anonymization countermeasures [8, 14, 32].

6.2 Code De-anonymization
One of the most popular de-anonymization methods is based on the
syntactic features, which has shown significant success in source
code authorship attribution [9, 17, 30, 35, 41]. Typically, an AST
tree [34] is built based on the source code and the code authorship
is detected by analyzing the AST tree. For example, Alsulami et al.
[9] use Long Short-Term Memory(LSTM) based on the AST trees of
Python and C++ source code, and achieve 88.86% in the case of 70
programmers on Python. In addition, N-grams (e.g., frequencies of
tokens in source code) [24, 25] and layout and lexical features [17,
20, 26] are also popular features used in syntactic feature-based
code de-anonymization. In this line of work, Caliskan-Islam et al.
[17] achieve 98.04% accuracy under the setting of 250 programmers
and 9 problems for C++, and 87.93% accuracy under the setting of 23
programmers and 53.91% under the setting of 229 programmers for
Python. Ding et al. [20] achieve 67.2% accuracy under the setting
of 46 programmers for Java.

Another line of work extends code de-anonymization to binary
codes. Rosenblum et al. [36] propose methods of detecting the
stylistic features from binary codes. Caliskan-Islam et al. [18] use
disassembly and decompilation techniques to process binary source
code and extract features in disassembly and decompilation code.
They input all the features into a random forest classifier and obtain
highly accurate de-anonymization for C++.

In addition, Kothari et al. [29] propose a set of distance metrics
on unidentified source code to determine the closest matching pro-
files. Specifically, they create the profile database and compute the
distance of the testing data to the data from the database. Spafford
et al. [37] proposed to use lexical features and syntactic features in
source code authorship detection.

6.3 Static and Dynamic Analysis
Static analysis [33] analyzes the behaviors of computer programs
without actually executing them. Nowadays, static analysis has
been widely applied in software engineering. For example, it is
used to predict the worst-case execution time [23] or to detect the
error of source code without running it [39].

Dynamic analysis [11] analyzes the properties of running pro-
grams. It has been used in correcting the bugs of programs auto-
matically [40]. Hoorn et al. [38] introduce an extensible framework
for monitoring and analyzing the runtime behavior of software
systems.

Further, there are prior works that attempt to combine static
and dynamic analysis. Bacci et al. [10] measure the robustness to
code obfuscation via static and dynamic analysis. Hu et al. [27]
proposed DUET, a framework which integrates dynamic and static
analyses for malware clustering. Chen et al. [19] propose an ap-
proach that integrates static and dynamic analysis to find subtle
atomicity violations.

6.4 Classification Models
Several classification models have been widely used in code stylom-
etry analysis. Random forest [31] has been used in [17, 18, 41] and
achieves impressive accuracy. C4.5 decision tree is another model
used in code de-anonymization. Elenbogen et al. [21] use C4.5 deci-
sion tree to detect outsourced students programming assignments
in 12 programmers and achieve 74.4% accuracy. Nearest neighbor
classifier has been used in de-anonymizing java code [25].

Nowadays, deep learning models have achieved tremendous
success in a range of applications such as image classification and
natural language processing. The Siamese network is a special
type of neural network architecture. Instead of learning to classify
the inputs, the Siamese network learns to differentiate two inputs,
i.e., the similarity or distance. It has been applied in a number
of applications. For example, Bromley et al. [16] use the Siamese
network in signature verification; Baraldi et al. [12] use the Siamese
network in scene detection; and Koch et al. [28] perform image
classification using Siamese network.

7 CONCLUSION
In this paper, we present the design, implementation, and evalua-
tion of Sundae, a novel code de-anonymization framework that
integrates both static and dynamic stylometry analysis. Through
extensive evaluation on benchmark datasets, we demonstrate that
compared with existing code de-anonymization methods, Sundae
enjoys a set of key advantages: (i) it only requires a small number
of hand-crafted features; (ii) it is insensitive to the number of pro-
grammers in the pool; and (iii) it is extensible to new programmers
without re-training. The empirical results indicate the integration
of static and dynamic analysis as a promising avenue for further
code stylometry research.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1566526 and 1718787. Shouling Ji is
partly supported by NSFC under No. 61772466, the Provincial Key
Research and Development Program of Zhejiang, China under No.

2017C01055, the Alibaba-ZJU Joint Research Institute of Frontier
Technologies, the CCF-NSFOCUS Research Fund under No. CCF-
NSFOCUS2017011, and the CCF-Venustech Research Fund under
No. CCF-VenustechRP2017009.

REFERENCES
[1] 2017. Google Code Jam. https://code.google.com/codejam/ Google Code Jam

link.
[2] 2017. Google Code Jam contest 3264486. https://code.google.com/codejam/

contest/3264486/dashboard Google Code Jam link.
[3] 2018. Abstract Syntax Trees. https://docs.python.org/2/library/ast.html Python

AST module.
[4] 2018. Anaconda. https://www.anaconda.com/ Anaconda.
[5] 2018. Disassembler for Python bytecode. https://docs.python.org/3/library/dis.

html Python dis module.
[6] 2018. memory profile. https://pypi.org/project/memory_profiler/ Python

memory profile.
[7] 2018. Python cProfile. https://docs.python.org/2/library/profile.html Python

cProfile.
[8] Sadia Afroz, Michael Brennan, and Rachel Greenstadt. 2012. Detecting hoaxes,

frauds, and deception in writing style online. In Security and Privacy (SP), 2012
IEEE Symposium on. IEEE, 461–475.

[9] Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis, and Rachel
Greenstadt. 2017. Source Code Authorship Attribution Using Long Short-Term
Memory Based Networks. In European Symposium on Research in Computer
Security. Springer, 65–82.

[10] Alessandro Bacci, Alberto Bartoli, Fabio Martinelli, Eric Medvet, Francesco Mer-
caldo, and Corrado Aaron Visaggio. 2018. Impact of code obfuscation on android
malware detection based on static and dynamic analysis. In 4th International
Conference on Information Systems Security and Privacy. Scitepress, 379–385.

[11] Thomas Ball. 1999. The concept of dynamic analysis. In Software Engineer-
ing?ESEC/FSE?99. Springer, 216–234.

[12] Lorenzo Baraldi, Costantino Grana, and Rita Cucchiara. 2015. A deep siamese
network for scene detection in broadcast videos. In Proceedings of the 23rd ACM
international conference on Multimedia. ACM, 1199–1202.

[13] Shane Bergsma, Matt Post, and David Yarowsky. 2012. Stylometric analysis
of scientific articles. In Proceedings of the 2012 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, 327–337.

[14] Michael Brennan, Sadia Afroz, and Rachel Greenstadt. 2012. Adversarial stylom-
etry: Circumventing authorship recognition to preserve privacy and anonymity.
ACM Transactions on Information and System Security (TISSEC) 15, 3 (2012), 12.

[15] Marcelo Luiz Brocardo, Issa Traore, Sherif Saad, and Isaac Woungang. 2013.
Authorship verification for short messages using stylometry. In Computer, Infor-
mation and Telecommunication Systems (CITS), 2013 International Conference on.
IEEE, 1–6.

[16] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
1994. Signature verification using a" siamese" time delay neural network. In
Advances in Neural Information Processing Systems. 737–744.

[17] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare
Voss, Fabian Yamaguchi, and Rachel Greenstadt. 2015. De-anonymizing program-
mers via code stylometry. In 24th USENIX Security Symposium (USENIX Security),
Washington, DC.

[18] Aylin Caliskan-Islam, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad
Rieck, Rachel Greenstadt, and Arvind Narayanan. 2015. When coding style
survives compilation: De-anonymizing programmers from executable binaries.
arXiv preprint arXiv:1512.08546 (2015).

[19] Qichang Chen, Liqiang Wang, Zijiang Yang, and Scott D Stoller. 2009. HAVE:
detecting atomicity violations via integrated dynamic and static analysis. In
International Conference on Fundamental Approaches to Software Engineering.
Springer, 425–439.

[20] Haibiao Ding and Mansur H Samadzadeh. 2004. Extraction of Java program fin-
gerprints for software authorship identification. Journal of Systems and Software
72, 1 (2004), 49–57.

[21] Bruce S Elenbogen and Naeem Seliya. 2008. Detecting outsourced student pro-
gramming assignments. Journal of Computing Sciences in Colleges 23, 3 (2008),
50–57.

[22] Song Feng, Ritwik Banerjee, and Yejin Choi. 2012. Syntactic stylometry for de-
ception detection. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2. Association for Computational
Linguistics, 171–175.

[23] Christian Ferdinand and Reinhold Heckmann. 2004. ait: Worst-case execution
time prediction by static program analysis. In Building the Information Society.
Springer, 377–383.

[24] Georgia Frantzeskou, Stephen MacDonell, Efstathios Stamatatos, and Stefanos
Gritzalis. 2008. Examining the significance of high-level programming features
in source code author classification. Journal of Systems and Software 81, 3 (2008),
447–460.

[25] Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, and Sokratis Kat-
sikas. 2006. Source code author identification based on n-gram author profiles. In
IFIP International Conference on Artificial Intelligence Applications and Innovations.
Springer, 508–515.

[26] Andrew Gray, Stephen MacDonell, and Philip Sallis. 1997. Software forensics:
Extending authorship analysis techniques to computer programs. (1997).

[27] Xin Hu and Kang G Shin. 2013. DUET: integration of dynamic and static analyses
for malware clustering with cluster ensembles. In Proceedings of the 29th annual
computer security applications conference. ACM, 79–88.

[28] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In ICML Deep Learning Workshop,
Vol. 2.

[29] Jay Kothari, Maxim Shevertalov, Edward Stehle, and Spiros Mancoridis. 2007. A
probabilistic approach to source code authorship identification. In Information
Technology, 2007. ITNG’07. Fourth International Conference on. IEEE, 243–248.

[30] Flavius-Mihai Lazar and Ovidiu Banias. 2014. Clone detection algorithm based
on the Abstract Syntax Tree approach. In Applied Computational Intelligence and
Informatics (SACI), 2014 IEEE 9th International Symposium on. IEEE, 73–78.

[31] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by ran-
domForest. R news 2, 3 (2002), 18–22.

[32] AndrewWE McDonald, Sadia Afroz, Aylin Caliskan, Ariel Stolerman, and Rachel
Greenstadt. 2012. Use fewer instances of the letter âĂĲiâĂİ: Toward writing style
anonymization. In International Symposium on Privacy Enhancing Technologies
Symposium. Springer, 299–318.

[33] Anders Møller and Michael I Schwartzbach. 2012. Static program analysis.
[34] Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. 2005. Understanding source

code evolution using abstract syntax tree matching. ACM SIGSOFT Software
Engineering Notes 30, 4 (2005), 1–5.

[35] Brian N Pellin. 2000. Using classification techniques to determine source code
authorship. White Paper: Department of Computer Science, University of Wisconsin
(2000).

[36] Nathan Rosenblum, Xiaojin Zhu, and Barton P Miller. 2011. Who wrote this
code? identifying the authors of program binaries. In European Symposium on
Research in Computer Security. Springer, 172–189.

[37] Eugene H Spafford and Stephen A Weeber. 1993. Software forensics: Can we
track code to its authors? Computers & Security 12, 6 (1993), 585–595.

[38] André Van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker: A frame-
work for application performance monitoring and dynamic software analysis.
In Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering. ACM, 247–248.

[39] Kostyantyn Vorobyov and Padmanabhan Krishnan. 2010. Comparing model
checking and static program analysis: A case study in error detection approaches.
Proceedings of SSV (2010).

[40] Ke Wang, Rishabh Singh, and Zhendong Su. 2017. Dynamic Neural Program
Embedding for Program Repair. CoRR abs/1711.07163 (2017). arXiv:1711.07163
http://arxiv.org/abs/1711.07163

[41] Wilco Wisse and Cor Veenman. 2015. Scripting dna: Identifying the javascript
programmer. Digital Investigation 15 (2015), 61–71.

https://code.google.com/codejam/
https://code.google.com/codejam/contest/3264486/dashboard
https://code.google.com/codejam/contest/3264486/dashboard
https://docs.python.org/2/library/ast.html
https://www.anaconda.com/
https://docs.python.org/3/library/dis.html
https://docs.python.org/3/library/dis.html
https://pypi.org/project/memory_profiler/
https://docs.python.org/2/library/profile.html
http://arxiv.org/abs/1711.07163
http://arxiv.org/abs/1711.07163

	Abstract
	1 Introduction
	2 Overview of SUNDAE
	2.1 Integration of Static and Dynamic Analysis
	2.2 Extensible Code Stylometry Matching

	3 Design and Implementation
	3.1 Static Feature Extractor
	3.2 Dynamic Feature Extractor
	3.3 Stylometry Matcher

	4 Empirical Evaluation
	4.1 Experimental Setting
	4.2 Comparative Evaluation
	4.3 Feature Evaluation
	4.4 Extensibility Evaluation

	5 Discussion
	5.1 Limitations
	5.2 Countermeasures
	5.3 Future Directions

	6 Related Work
	6.1 Stylometry
	6.2 Code De-anonymization
	6.3 Static and Dynamic Analysis
	6.4 Classification Models

	7 Conclusion
	Acknowledgments
	References

